Activation and labelling of the purified skeletal muscle ryanodine receptor by an oxidized ATP analogue.

نویسندگان

  • M Hohenegger
  • A Herrmann-Frank
  • M Richter
  • F Lehmann-Horn
چکیده

We have tested the periodate-oxidized ATP analogue 2',3'-dialdehyde adenosine triphosphate (oATP) as a ligand for the skeletal muscle ryanodine receptor/Ca(2+)-release channel. Ca2+ efflux from passively loaded heavy sarcoplasmic reticulum vesicles of skeletal muscle is biphasic. oATP stimulates the initial phase of Ca2+ release in a concentration-dependent manner (EC50 160 microM), and the efflux proceeds with a half-time in the range 100-200 ms. This oATP-modulated initial rapid Ca2+ release was specifically inhibited by millimolar concentrations of Mg2+ and micromolar concentrations of Ruthenium Red, indicating that the effect of oATP was mediated via the ryanodine receptor. The purified Ca(2+)-release channel was incorporated into planar lipid bilayers, and single-channel recordings were carried out to verify a direct interaction of oATP with the ryanodine receptor. Addition of oATP to the cytoplasmic side activated the channel with an EC50 of 76 microM, which is roughly 30-fold higher than the apparent affinity of ATP. The oATP-induced increase in the open probability of the ryanodine receptor displays a steep concentration-response curve with a Hill coefficient of approximately 2, which suggests a co-operativity of the ATP binding sites in the tetrameric protein. oATP binds to the ryanodine receptor in a quasi-irreversible manner via Schiff base formation between the aldehyde groups of oATP and amino groups in the nucleotide binding pocket. This allows for the covalent specific incorporation of [alpha-32P]oATP by borhydride reduction. A typical adenine nucleotide binding site cannot be identified in the primary sequence of the ryanodine receptor. Our results demonstrate that oATP can be used to probe the structure and function of the nucleotide binding pocket of the ryanodine receptor and presumably of other ATP-regulated ion channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.

Ca2+ release from skeletal muscle sarcoplasmic reticulum is activated by adenine nucleotides and suramin. Because suramin is known to interact with ATP-binding enzymes and ATP receptors (P2-purinergic receptors), the stimulation by suramin has been postulated to occur via the adenine nucleotide-binding site of the ryanodine receptor/Ca2+-release channel. We tested this hypothesis using suramin ...

متن کامل

Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel.

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg an...

متن کامل

A new scorpion toxin (BmK-PL) stimulates Ca2+-release channel activity of the skeletal-muscle ryanodine receptor by an indirect mechanism.

A peptide toxin isolated from the Chinese scorpion Buthus martensi Karsch (BmK-PL) stimulated Ca2+-release channel activity in both triad membranes and reconstituted ryanodine receptors partially purified from rabbit skeletal muscle. In [3H]ryanodine binding experiments, the toxin increased the affinity of ryanodine for the receptor, from a Kd of 24.3 nM to 2.9 nM, which is an enhancement simil...

متن کامل

Purified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms ca...

متن کامل

Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca , Mg , and ATP

Diaz-Sylvester PL, Porta M, Copello JA. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca , Mg , and ATP. Am J Physiol Cell Physiol 294: C1103–C1112, 2008. First published February 27, 2008; doi:10.1152/ajpcell.90642.2007.—Malignant hyperthermia (MH) susceptibility is a genetic disorder of skeletal muscle associated with mutations in the ryanodine receptor isoform 1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 308 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1995